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Abstract

Two experiments quanti®ed the forces necessary for large deformation of an in¯ated cylindrical tube made of a

material with a high elastic modulus. In the ®rst experiment, the end force required to maintain a buckled cylinder at a

given kink angle was determined. In the second experiment, the lateral force required to pinch the membrane sym-

metrically between two ¯at blades was measured.

An approximate theory is used, based on the observation that during deformation the membrane conserves its initial

zero Gaussian curvature in regions free of wrinkling. The novel feature is a simple approximation for the cross-sectional

shape. This permits the volume of the deformed cylinder to be quickly calculated. For walls that have negligible ex-

tensional and bending energy, the potential energy consists of only the pressure multiplied by the volume and the work

of the prescribed load. Minimization of this potential energy yields results for the indentation and buckling problems

that are in reasonable agreement with the experimental measurements. For small displacements in the blade pinching

experiment, the volume approximation overestimates the force. It is found that a local solution analogous to the

Hertzian contact problem provides a better approximation. For the kinked tube with end loading, an interesting feature

is a decrease in the load when the fold from one side contacts the opposite side of the tube. The calculations indicate

that a minimum potential energy exists with the fold straight. For slightly larger kink angles, however, the fold buckles

out of the plane of symmetry. The moment at the single kink, due to the end loads, remains between bounds from the

analysis of a pressurized elastic tube with nonpositive stresses. Ó 2000 Published by Elsevier Science Ltd.
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1. Introduction

Nonlinear membrane behavior may be divided into problems in which the modulus of the membrane is
either low or high. A low modulus material is typi®ed by a rubber balloon, for which both the nonlinear
elastic behavior of the wall and the geometric nonlinearity is important. This problem, with restricted
geometric con®guration, has been the subject of many papers, as discussed by Jenkins (1991) and Libai and
Simmonds (1998). In the present study, we are concerned with a high modulus material, typi®ed by a party
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balloon made of Mylar, for which the wall is essentially linearly elastic, but the geometric di�culties of
unfolding and wrinkling are considerable. Work on this problem is ongoing in several laboratories, such as
reported by Liu and Jenkins (1998) and Greschik and Mikulas (1998). Serving as a motivation are the large
space structures being planned, with general structural considerations surveyed by Szyszkowski and
Glockner (1990), and speci®c current plans outlined by Lou and Feria (1998). Because accuracy and re-
liability are desired and ground based simulations are often not possible, numerical simulation of de-
ployment is important. To simplify such simulations, an approximate theory is proposed by Fay and Steele
(1999) for the static analysis of joint forces and moments. A potential energy function is used in which the
work of the pressure is included, but the strain energy of the wall in extension and bending is generally
neglected. The novel feature is the procedure for computing the tube volume. This theory is found to give
reasonable agreement with experimental results for the torque in a constrained rolled tube and for
asymmetric pinching of a tube by a rigid blade. The application of the torque results in the dynamic process
of tube unrolling is given by Steele and Fay (1998).

In the present work, we consider two problems that are more basic and perhaps provide a better ex-
amination of the procedure. The ®rst is the symmetric pinching of an in¯ated tube, which is perhaps the
simplest problem involving a large displacement and rigid constraint. The second is the bending of an
in¯ated tube. The perturbation from the initially straight con®guration was apparently ®rst considered by
Stein and Hedgepeth (1961) and subsequently by Lukasiewicz and Glockner (1984), who report mea-
surements, and by Haseganu and Steigmann (1994), who consider nonlinear material behavior. The
pressurized tube has an end moment Mw � ppR3

0=2 at which compression (wrinkles) ®rst occur. In this
equation, R0 is the tube radius and p is the internal pressure. With increasing moments, the wrinkled region
grows larger, until at 2Mw, the wrinkles extend around the entire circumference of the tube. We are,
however, interested in a post-buckling con®guration with a single region of larger deformation, i.e., kinking
of the tube. This is signi®cant in the unfolding of an initially ¯at tube in the ``z-fold'' con®guration.

2. Experiments

Both experiments were performed with a cylinder made from a sheet of urethane covered fabric of
thickness t � 0:25 mm. When in¯ated, the urethane formed a cylindrical tube that had a radius
R0 � 30 mm and a length L � 1:380 m. The ends were plugged with thick PVC caps of the same diameter as
the cylinder. An in¯ation hose passes from a pressure regulator through one of the PVC end caps. A high
pressure tank attached to the pressure regulator was used to in¯ate and maintain the tube at the desired
pressure.

2.1. Symmetric blade load

A schematic of the experiment is shown in Fig. 1(a). The membrane was in a wooden cradle that
supports both ends. The ends of the tube could not be supported in a manner that allowed them to move
towards each other freely, but the end constraint was minimized as much as possible. The device shown in
Fig. 2, was used to pinch symmetrically the middle of the membrane with two ¯at blades. By tightening or
loosening the adjustment nuts, the de¯ection d could be changed, while at the same time, the stretching of
the springs could be monitored so that the pinching force Q could be determined. Thus, the load±de¯ection
curves could be measured for several di�erent values of internal pressure. The resulting data are shown in
Fig. 3. Expressed in terms of the dimensionless load and displacement factors, the measurements show little
sensitivity to the speci®c magnitude of pressure. This means that the elastic properties of the wall have little
e�ect on the results and that the wall is behaving almost inextensionally.
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2.2. Bending

A schematic of the experiment for tube bending is shown in Fig. 1(b). The urethane tube was hung in
the air by its connection to the in¯ation tube. A chain in series with a calibrated spring connected the two
PVC plugs at either end of the tube. By varying the length of the chain, we could alter the angle / of the
tube. At each angle, the extension of the spring measured the force Q for a variety of internal pressures. The

Fig. 1. Schematic of experimental con®guration with tube of radius R0 and Length L. (a) Symmetric blade loading, with the total force

Q on each blade and the blade displacement d. The radius in the region of reversed curvature is rt. (b) End loading, with end force Q
axial displacement d, and deformed tube angle /.

Fig. 2. Symmetric blade measurement and loading device.
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resulting data are shown in Fig. 4. Unlike the pinch load tests, a small but systematic dependence on the
exact value of pressure can be seen. The lower the pressure, the higher the value of Q�. In the region where
/ > 1, this dependence is more pronounced.

Also of interest is the relation between the load and displacement. The displacement was not measured
directly, but an approximation can be computed in terms of the angle. The end displacement factor d� is

d� � 2
d
L
� 1ÿ cos /� 4

R0

L
/ cos /: �1�

Using this result gives the representation in Fig. 5. Also of interest is the bending of the tube under a pure
moment loading of the ends. From the end force test shown in Fig. 1(b), the e�ective moment at the kink
region is approximated by

M� � 2M
ppR3

� M
Mw

� Q�
L
R0

sin /

�
ÿ 4/ sin /� 2 cos /

�
: �2�

Fig. 4. Relation of load factor Q� � Q=�ppR2� and angle / for bending of an in¯ated tube. The force Q and the angle / were measured

in the experiment. The points give the measured values for internal pressures (Pa) of 4905 (circles), 6900 (triangles), 8800 (squares), and

11000 (rotated squares). When the angle is greater than 1 radian, the partition in the center of the fold contacts the lower side of the

tube. The volume potential energy solution is shown for the assumptions that the partition remains straight and wrinkled. (Tube

urethane, L � 1:38 m, R0 � 30 mm, t � 0:25 mm.)

Fig. 3. Symmetric blade results from calculations and experiment.
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Using this result gives the representation in Fig. 6. The values of moment for this large deformation lie in
the range of 1 < M� < 2, which are the limits for wrinkling from the analysis for pure moment loading of
Stein and Hedgepeth (1961). Surprisingly, the values of M� are not too much above 1 for much of the range
and reach 2 for the largest deformation measured. For the end force loading, however, the moment is
maximum only at the kink region, and the amount of tube material in the region increases with the angle;
therefore, a value of 2 may be possible. Of interest is the drop in moment as the angle / equals 1 in Fig. 4.
At this angle, the partition formed by the top generator of the tube touches the bottom generator, so for
larger angles, the geometry of the kink changes substantially. At su�ciently large angles, / > 1, the par-
tition is observed to buckle out of the plane of symmetry, to one side or the other, avoiding contact with the
lower generator.

Fig. 6. Same information as in Fig. 4, but showing the relation of end moment factor M� � M=�ppR3� and rotation angle /. The

experimental values for the moment are calculated from the force and the angle in Fig. 4 using Eq. (2). The solution is for the tube with

pure bending moment, for which compression of the straight tube occurs at the moment M� � 1 and total collapse should occur at

M� � 2.

Fig. 5. Same information as shown in Fig. 4, but showing the relation of end force factor Q� and end displacement factor d� � 2d=L for

bending experiment. The end displacement for the experimental points is calculated from the angle / using Eq. (1).
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3. Approximate theory

The main assumption is that all the work done by the applied loads goes into changing the volume and
not into stretching and bending the wall of the tube. Generally, this is valid for a high modulus material
with a su�ciently high internal pressure, but not for a rubber balloon. Such an approximation was used by
Lukasiewicz and Glockner (1984) for the analysis of a tube with an axial load such as in Fig. 1(b), but with
one end rigidly supported and the loaded end is a hemispherical membrane. In the present work, the
loaded end is simpli®ed, as a better approximation for the kinked region is proposed, and larger ampli-
tudes of the kink angle are considered, that are signi®cant in the deployment of a z-folded tube. Although
some dependence on pressure is evident in the end load results (Fig. 4), which indicates an e�ect of the wall
elastic properties, only the wall with an inextensional reference surface will be considered presently.
Consequently, the total potential energy consists of only the work of the internal pressure and the external
loads

P � ÿpV ÿ QdÿM/ �3�
in which V is the volume of the tube. The di�culty is in determining the volume when a substantial kink is
in the tube, and there is contact between di�erent portions of the wall that is not known a priori. However,
the task can be accomplished by applying the principles used in Fay and Steele (1999).

3.1. Basic principles for geometry

The principles for the determination of the geometry of the deformed tube are
1. An inextensional surface of zero Gaussian curvature must remain a surface of zero Gaussian curvature

in a region of biaxial tension. Thus, the initially ¯at surface can have a curvature in one direction or the
other, but not both, in a region of biaxial tension.

2. In a region of wrinkling, an ``averaged'' surface may be de®ned, for which the Gaussian curvature can be
either positive or negative. This occurs in a region with a nonpositive component of principal stress.

3. For local equilibrium, constant pressure loading will be carried by constant curvature.
4. Discontinuity in slope occurs only when an external line load is present.

3.2. Deformed tube con®guration

The foregoing principles provide an interpretation of the deformed con®guration in the two experiments
shown in Fig. 1. The pinch load (Fig. 1a) causes local deformation. The ``top'' (on the left in Fig. 1(a)) and
``bottom'' (on the right in Fig. 1a) surfaces are in a biaxial tension and by principle (1), they must remain
surfaces of zero Gaussian curvature. Consequently, there is a transition from a nonzero component of
curvature in the circumferential direction in the main portion of the tube to a nonzero component in the
plane of the ®gure in the deformed region near the load. By principle (3), the radius of curvature is constant
in this region with the value rt. By principle (4), the slope of the top and bottom generators of the cylindrical
surface must be continuous except at the concentrated external load. Details of the geometry are shown in
Fig. 7. The coordinates x; y are at the beginning of the deformed region, while the angle b is the total angle
subtended by the deformed region, and h is the angle from the edge of the deformed region to the general
point P on the top generator. The point S is the point on the bottom generator that has the same arc length
along the generator to the tube end as point P. For the pinch load (Fig. 7), the top and bottom generators
are symmetric.

For the end loading of the tube shown in Fig. 1(b), the bottom generator can only have the constant
curvature in the kink region, while the top generator must fold and form a partition on the plane of
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symmetry, as also observed by Lukasiewicz and Glockner (1984). For values of the kink angle, / < 1, the
partition extends only partially across the distance to the bottom generator, as indicated in Fig. 8(a). The
radius of the bottom generator must be rb � 2R0. The points P and S remain equidistant from the tube
end, so point P must be on the partition. At the angle, / � 1, the partition contacts the bottom generator.
Fig. 8(b) shows one possibility, that the partition remains straight and provides a force on the bottom
generator, which therefore can have a slope discontinuity. The radius of the bottom generator is then
rb > 2R0, and the angle subtended is b < /. Another possibility, shown in Fig. 8(c), is that the partition
cannot sustain the compressive stress and wrinkles as required in Fig. 8(b). A simple approximation is that
all wrinkling occurs at the point of contact with the bottom generator as indicated in Fig. 8(c). As observed
in the experiments, the partition actually displaces to one side asymmetrically. However, the approxima-
tion (Fig. 8(c)), simulates this as the partition does not interfere with the bottom generator and cause a
slope discontinuity.

The cross-section for each of the three cases shown in Fig. 8 is also shown in Fig. 9. The initial in¯ated
tube with the circular cross-section with radius R0 becomes ¯attened with the height H, the distance be-
tween points P and S. The distance g is the width of the region of the reversed curvature. The membrane
must carry the pressure load by curvature in one direction or the other. Therefore, by principle (3), the
sides must have a constant radius of curvature. By principle (4), there cannot be a slope discontinuity, so
the radius of the sides must be H=2. As observed, the sides will wrinkle in the axial direction and form a
surface of negative Gaussian curvature. Thus, the sides carry the pressure load by stress in the x2 direction
in Fig. 9, while the top and bottom regions carry the pressure by stress in the direction of the generators.
As observed, the plane of the semicircular arcs in Fig. 9, rotates slightly to be normal to the wrinkled
surface.

The width of the ¯at is

g � p R0

�
ÿ H

2

�
; �4�

and the cross-sectional area is

Asection � p R2
0

 
ÿ R0

�
ÿ H

2

�2
!
: �5�

Therefore, from the geometry of the generators, such as in Fig. 7, the coordinates of points P and S can be
obtained. Then, the distance H between P and S provides the cross-sectional area.

Fig. 7. Geometry for symmetric pinch load. The region near the load Q has the constant radius of curvature rt and subtends the angle b.

The points P and S are equidistant from the tube end and the distance H apart.
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3.3. Volume integral

We begin with a general form of a volume integral in an arbitrary coordinate system. For the position
vector r � r�xi�, and base vectors gi � r;i, the volume is

V �
Z Z Z

J dx1dx2dx3; �6�

Fig. 8. Geometry for the bending calculations. The surface is inextensional. Therefore in the kinked region the following approxi-

mations are used. (a) For / 6 1, the radius of the lower generator must equal the tube diameter rb � 2R0, while the upper generator

folds and forms a straight partition with the length /rb. (b) For / > 1, the partition remains straight, but the contact forces a slope

discontinuity in the lower generator; so the radius of the lower generator is rb > 2R0, and the angle is b < /. (c) For / 6 1, the partition

wrinkles at the region of contact with the lower generator, so the radius and the angle of the lower generator are / and rb � 2R0, as in

(a). In all three cases the general points on the lower and upper generators are indicated by Q and S which are at the same arc length

from the tube end. Point S is de®ned in terms of the angle h.
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J � g1 � �g2 � g3�: �7�

For the present purpose, it is convenient to write the position vector to any point within the space enclosed
by the membrane as the sum of a vector to the center point of the cross-section Rc and a vector in the cross-
section w, as indicated in Fig. 10

r�x1; x2; x3� � Rc�x1� � x3w�x1; x2�; �8�

where x1 is the parameter of the center line, x2 is the parameter around the perimeter of the cross-section,
that can be taken as the arc length (0 6 x2 6 2pR0), and x3 is the fraction distance from the center to the
perimeter of the cross-section �0 6 x3 6 1�. Then, Eq. (8) used in Eq. (6) givesI Z 1

0

J dx3 dx2 � 1
2
Rc;1 �

I
�w;2 � w�dx2 � 1

3

I
w;1 � �w;2 � w�dx2; �9�

the ®rst term of which gives the area of the cross-section. The second term is zero for a symmetric cross-
section, for which w�x1; x2 � pR0� � ÿw�x1; x2�. This leaves:

V �
Z

Rc;1 � nAsection dx1 �10�

in which Asection is the area of the cross-section (Eq. (5)), and n is the unit normal to the cross-section. The
coordinates of points P and S provide all that is needed for the calculation of the volume from Eq. (10).
Using from 50 to 500 points in a numerical integration procedure produces essentially the same results.

Fig. 10. Three-dimensional wire frame of geometrical approximation. The vector Rc�x1� is the position vector from a ®xed point to the

center of the cross section, and the vector w�x1; x2� is from the center to a point on the perimeter of the cross section.

Fig. 9. Cross section of tube on the plane through points P and S which are the distance H apart. The condition that the arc length

remains unchanged provides the width of the reverse curvature region g and the area in terms of H and the original radius R0. The

vector w is from the center to a point on the perimeter, around which the arc length is x2.
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4. Symmetric blade loading

4.1. Large displacement

For the con®guration of the symmetric blade loading of the tube (Fig. 1a), the computation simpli®es
greatly. The geometry is shown in Fig. 7. Because of the symmetry, the points at the top and bottom of the
tube remain at the same axial distance. Thus, the cross-sectional area in the deformed region at the angle h
is

Asection � p R2
0

h
ÿ r2

t �1ÿ cos h�2
i
: �11�

Therefore, the change in volume from Eq. (10) is

DV � ÿpr3
t

Z b

0

�1ÿ cos h�2 cos hdhÿ pR2
0rt�bÿ sin b�; �12�

and the displacement under the load and the axial displacement are

d � rt�1ÿ cos b�; �13�

D � rt�bÿ sin b�: �14�
An end sti�ness C is added to the potential energy (3), and the result can be written in a dimensionless form,

P��d�; b� � d�
3

F1�b� � d�F2�b� � 1
2
C�d�

2

F 2
2 �b� ÿ Q�d� �15�

in which

F1�b� �
R b

0
�1ÿ cos h�2�cos h�dh

�1ÿ cos b�3 ; �16�

F2�b� � bÿ sin b
1ÿ cos b

; �17�

and the dimensionless end sti�ness is

C� � C
ppR0

: �18�

The condition for a stationary value of the potential energy provides the relations

o
ob

P� � d�
3

F 01 � d�F 02 �
1

2
C�d�

2

2F2F 02 � 0; �19�

o
od�

P� � 3d�
2 � F2 � C�d�F 2

2 ÿ Q� � 0: �20�

Thus, the problem reduces to a closed form calculation. For a given value of the angle b, the quadratic
equation (19) for the displacement d� can be solved, and the result substituted into Eq. (20) for the load Q�.
The results for C� � 0 and C� � 1 are shown in Fig. 3. For the larger values of indentation, the agreement
with the experimental results is reasonable. For the range of pressures used, the measurements collapse to a
single curve with some scatter. The scatter is highest for the larger displacements. However, there is no clear
trend with the magnitude of pressure. Therefore, it appears that the small end constraint is somewhat
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di�erent in each test and not related to the pressure. If the ends were ®xed, then the sti�ness C is determined
by the axial elastic sti�ness of the tube, so that

C� � 8Et
pL

; �21�

for which the pressures used have a value from 120 to 720. Such values used in Eqs. (19) and (20) produce a
large increase in the end force for the larger indentation magnitudes, which are o� scale in Fig. 3. It is clear
that the axial constraint in the experiments was relatively small.

Note that an approximation for the solution can be obtained by taking the ®rst term in the power series
expansion for F1 and F2 in Eqs. (16) and (17) with the result

b � 6

5

� �1=2

d�; �22�

Q� � 4

3

6

5

� �1=2

d� � 1:46d�; �23�

which gives a straight line in Fig. 3 close to the curve for C� � 1.
For a small indentation, however, the results from Eqs. (19) and (20) give a higher value for the load

than the experiments. It is clear that the potential energy with the simple volume approximation captures
the main behavior for large displacement, but misses the signi®cant e�ect for small displacements. An
alternate local solution for the small displacement is given in the next section.

4.2. Small displacement±Hertzian contact

For small magnitudes of displacement, the in¯ated tube can be treated as a ¯at membrane with the
equation,

Nxw;xx � Nyw;yy � 0 �24�
in which w is the displacement in the normal direction and the prestress in the x- and y-directions are given
by the resultants Nx and Ny . For loading along the line where y � 0, extending from the point ÿa to the
point �a, the solution may be written in terms of a line source.

w�x; z� �
Z a

ÿa
q�n� log

��������������������������
�xÿ n�2 � z2

q
dn; �25�

where z � y
�������������
Nx=Ny

p
, and q�n� is the source distribution. The total force acting is

Q � 2Ny lim
y!0

Z a

ÿa

ow
oy

dn � 2p
����������
NxNy

p Z a

ÿa
q�n�dn: �26�

The slope along the loaded line is

ow
ox
�x; z� �

Z a

ÿa
q�n� xÿ n

�xÿ n�2 � z2
dn; �27�

for which the limit with z � 0, becomes

ow
ox
�x; 0� �

Z a

ÿa
q�n� 1

xÿ n
dn: �28�

The form of Eqs. (26) and (28) is the same as in the Hertzian contact problem in elasticity. Following
Barber (1992), we change the variables to
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x � a cos /; n � a cos h: �29�
The integral becomes

ow
ox
�x; 0� �

Z p

0

q�h� sin h
cos /ÿ cos h

dh; �30�

and the force distribution can be written as a Fourier series

q�h� �
X1
n�0

qn cos nh

 !,
�sin h�: �31�

Only the ®rst term contributes to the resultant force as seen in Eq. (26)

Q � 2p
����������
NxNy

p
apq0: �32�

With the result,Z p

0

cos nh
cos /ÿ cos h

dh � ÿp
sin n/
sin /

: �33�

Eq. (30) becomes

ow
ox
�x; 0� sin / � ÿp

X
qn sin n/: �34�

For contact between a membrane of curvature R0 and a straight edge, the local problem is the same as
the contact between a ¯at membrane and a curved edge. Thus, the slope in the contact zone is

ow
ox
�x; 0� sin / � x

R
sin / � a

R
cos / sin / � a

2R
sin 2/: �35�

From Eq. (33), the nonzero coe�cients of the load intensity in Eq. (31) are q0, given by Eq. (32), and q2

q2 � ÿ a
2pR

: �36�

The condition that the stress is not singular at the ends is

q0 � q2 � 0; �37�
which provides a relation between the load and the width of the contact zone

Q � pR
����������
NxNy

p a
R

� �2

: �38�

Generally, in the contact problem, the magnitude of the displacement cannot be determined from a local
consideration because of the logarithmic behavior in Eq. (25). However, for the present problem of two
opposed loads on opposite sides of the tube, the condition that the circumference remain unstretched
provides the relation between contact distance 2a and the displacement d

d � 2a
p
: �39�

Replacing the contact width in Eq. (38) yields the relation between load and displacement

Q � pR
����������
NxNy

p dp
2R0

� �2

: �40�

For the pressure loading of a tube, the membrane stress resultants are
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Nx � pR0; Ny � pR0

2
; �41�

so the load±displacement relation in Eq. (40) becomes

Q� � 1���
2
p p

2

� �2

d�
2 � 1:744d�

2

: �42�

If the ®nite width of the blade loading of the tube is taken into consideration, then the total force on the
blade is

Q� � Bwidth

R0

d� � 1���
2
p p

2

� �2

d�
2

: �43�

For the experimental con®guration, the ratio of the blade width to tube radius is

Bwidth

R0

� 0:067; �44�

and Eq. (43) produces the curve in Fig. 3, labeled as the small displacement contact solution. Thus, the
experimental results make a transition from the quadratic small displacement solution (43) to the nearly
linear large displacement result from Eqs. (19) and (20) at displacements d=R0 � 0:2.

5. Tube bending

The geometry for the bending of the tube due to the end loading in Fig. 8 yields the expressions for the
coordinates of the point S:

xS � rb�cos�/ÿ b� ÿ cos�/ÿ h��; �45�

yS � rb�ÿ sin�/ÿ b� � sin�/ÿ h��: �46�
The total angle is b � / for cases Fig. 8a and c, and for the case Fig. 8b:

sin b
b
� sin /: �47�

The radius of the bottom generator is

rb � 2R0 sin /
sin /ÿ sin�/ÿ b� : �48�

Thus, all the geometry in Fig. 8 and consequently the volume from Eq. (10) depends only on the value of
the tube kink angle /. The displacement of the force at the end is

d � L
2
�1ÿ cos /� � 2R0 sin /� rb�ÿ sin /� sin�/ÿ b� � b cos /�: �49�

The potential energy (3), with zero end moment M, gives the result for the load for a given kink angle /

Q � ÿ p oV
o/

od
o/

: �50�

For zero end force Q, the result for the end moment is
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M � ÿp
oV
o/

: �51�

Expressions (50) and (51) can be evaluated numerically and provide the curves shown in Figs. 4±6. Most
interesting is the sudden drop in the end force at the tube angle, / � 1. The solution for the straight
partition for / > 1, i.e., the geometry in Fig. 8(b), captures this drop rather well. As / becomes larger, the
straight partition result is too sti�, giving a value of end force exceeding that from the solution for the
wrinkled partition (Fig. 8(c)). The experimental values are quite close to the results from Fig. 8a for / < 1,
reasonably close to the results from Fig. 8b for / near 1 and somewhat lower than the results from Fig. 8c
for larger values of /. Since there is more dependence on the pressure in the latter region, it seems that there
is some signi®cant elastic strain occurring. For the highest pressure, however, the measured values are close
to the calculated curve for the wrinkled partition.

In Fig. 5, the end force is shown as a function of the end displacement. In this post-buckling region, a
relatively small eccentric end force is required for the equilibrium. Fig. 6 shows the relation of moment at
the kinked region and the kink angle. The solution curves are directly from Eq. (51). Little di�erence occurs
with the calculation of end force from Eq. (50) and then the moment from Eq. (2).

A much simpler approximation for the volume is used by Lukasiewicz and Glockner (1984), namely, the
decrease in volume in the kink region is just one-half of the original. The potential energy for / < 1 is then
for the end load

P � ppR3
0/ÿ Qd �52�

with the solution,

Q� � L
2R0

sin /

�
� 2�cos /ÿ / sin /�

�ÿ1

; �53�

which gives values only about 25% higher than those from our present volume calculation procedure
plotted in Fig. 4. So starting from the initial straight con®guration where / � 0, with initial values of Q�

near 0.5, as in Lukasiewicz and Glockner (1984), the simpler approximation does well in showing the rapid
decrease in the load with kink angle. However, it does not show the increase in the end force for / > 0:8.
Furthermore, for pure moment loading, instead of Eq. (52), the potential energy is just

P � ppR3
0/ÿM/; �54�

which gives the result that the moment to maintain the kink has the value independent of /

M� � 2 �55�
rather than the more detailed behavior in Fig. 6 obtained from the present procedure.

6. Conclusions

The large deformation of a tube with internal pressure is a challenging problem. However, in the pre-
vious experiments (Fay and Steele, 1999), it was observed that deformation can be characterized in a simple
and straight forward manner by considering the basic principles of the behavior of thin shells. This provides
an approximation for the volume of the deformed tube, which is needed for the potential energy. Subse-
quently, little numerical work is needed for theoretical results that are in reasonable agreement with the
experiments. In the present study, two con®gurations that are more basic are solved by the same approach.
The conclusion is that the proper level of complexity has been obtained. A more simple approximation for
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the volume (Lukasiewicz and Glockner, 1984) misses some important features. More elaborate approxi-
mations for the volume involving more degrees of freedom have been found to have a negligible e�ect.

For the present con®gurations, the use of load normalized by the pressure force acting on the cross-
section enables the experimental values over a substantial range of pressure to collapse to an essentially a
single curve. These curves should be valid for a wide variety of materials and geometries.

For the pinch loading, the volume calculation overestimates the force for small amplitudes of dis-
placement. However, a local Hertzian contact solution yields the correct result. The singular behavior at the
local contact provided by the Hertzian solution is completely missed by the volume approximation. The
main feature is that the force±displacement relation is quadratic for small displacement and almost linear
for large, the opposite of the usual situation.

For the end loading, the moment at the kink is rather benign, remaining between the bounds of 1 and 2
for a substantial range of kink angle. However, an intriguing drop in moment occurs at / � 1, when the
fold forms a partition that touches the opposite side of the tube. This is properly described by the volume
calculation. The implication is that for a small range of kink angle near / � 1, the partition is under
compression without wrinkling in the minimum potential energy state. The magnitude of the compression
is, however, small and the partition is stabilized by a substantial tension in the orthogonal direction.
Nevertheless, this seems to violate the often invoked assumption that the thin membrane cannot sustain any
compression.

The general conclusion is that the volume calculation, based on the observations and basic principles of
shell behavior, does a good job in reducing the large displacement problems under consideration to a trivial
computation. This approach does not do everything, as in the small displacement pinch, and must be used
with care. However, it seems worthy of consideration for extension to a wider class of large displacement,
pressurized shell problems.
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